I_{57}

REACTIONS OF OXO ANIONS WITH HALOGEN AND NOBLE GAS FLUORIDES

William W. Wilson and Karl O. Christe* Rocketdyne, A Division of Rockwell International, Canoga Park, CA 91303 (U.S.A.)

An excess of BrF_5 when reacted with MNO_3 (M=Cs,Rb,K,Na) produces the corresponding $MBrF_{4}O$ salts and FNO_{2} in quantitative yields under mild conditions. With $LiNO_3$ the products are LiF, FNO₂ and BrF₃O. These reactions represent new, simple, one step syntheses for BrF_40^- salts, BrF₃O and FNO₂ from commercially available starting materials. NaBrF₄O and $RbBrF_{\mu}O$ are new compounds and were characterized by vibrational spectroscopy, DSC and their x-ray powder diffraction patterns. With Cs_2SO_4 , an excess of BrF_5 forms $CsSO_3F$ and $CsBrF_4O$, whereas with $CsIO_4$ it produces cis- and trans-CsIF₄O₂ and BrF₃O. When in the LiNO₃-BrF₅ system a large excess of ${\rm LiNO}_3$ is employed, the primary reaction products are LiF, BroNO₂ and N₂O₅. With an excess of IF₅, CsNO₃ produces CsIF₄O and FNO₂ which forms with an excess of IF₅ the unstable $NO_2^{+}IF_6^{-}$ adduct. With IF_7^{-} CsNO₃ forms first CsIF₆ + O₂, followed by the displacement reaction IF_6^- + IF_7^- --- IF₈ + IF₅ and adduct formation 2IF₅ + IF₆ ---- (IF₆ · 2IF₅). With XeF_6 , $CsNO_3$ underwent a complex reaction producing $CsXeO_2F_3$ ·XeF₂, O_2 , and FNO2.